
THERMOACOUSTIC EFFECTS DURING LARGE-AMPLITUDE VIBRATIONS 

IN A CLOSED TUBE 

R. G. Galiullin and I. P. Rewa UDC 536.244 

The theoretical justification is given of features of thermoacoustic effects, which 
is observed in a closed cylindrical tube during gas oscillations at resonance and 
near-resonance frequencies. 

It is well known that oscillations of a gas column are capable of generating nonuniform 
heating of the tube walls~ For large-amplitude oscillations the closed ends can heat up to 
1000~ [i]. This effect is also observed for resonance oscillations in a tube open at one 
end [2,  3 ] .  

In the study of the thermoacoustic effect in a closed tube, undertaP~n in [i], it is 
assumed that in the frequency region far from resonance the theoretical description may be 
confined to the second approximation in series expansions in the small parameter ~=U| 
However, an error in the boundary condltlons at the tube wall for the flrst approximation 
radial velocity component led to the loss of a most important term, so that the theoretical 
results of [I] do not describe the observed effect even qualitatively. At the same time, we 
are restricted in the resonance frequency region to the second approximation only, while the 
oscillation amplitude, on the other hand, can reach substantial values. 

An attempt is made below to descrlbe quantitatively the experimentally observed features 
of thermoacoustic affects in the whole frequency region investigated. 

The equations describing the motion of a viscous, compressible fluid with constant physi- 
cal properties in a long, cylindrical tube (R/L<<I) were given in [4]. To take into account 
absorption, which the wave undergoes during propagation, we Introduce a complex wave number 
[51 

k= ko(l+i~), 

so that the first approximation solution of the equations has the following form: 

Pl = [C] c~  [kox (1 + iq) + =r + ~im] exp (i~t), 

U l = I (1 + i~) sin [koX (1 ~- iq) + ~r + ~im] x 

v~ = (2TI+ i~l z) (R 2 - -  r") 1_  + (1 + 0 
r 

Olm--~0 2 1 + ( x - - l ) l /  -~-exp + ~ /  2,  

[l-I/"F ( Tx -7- exp ~ - -  (1 + i) = p~p . V - ~ -  (R - -  r ) )  ] ,1' 

where the subscript denotes the corresponding approximation. 

Let the closed end of the tube be located at the point x = O, and let the piston oscil- 
late around x = L, so that the boundary conditions are written in the form 
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ul(x = 0, r = 0) = 0; ul(x = L, r = 0) = col(cos q~ + isin~)exp(Rot). 
Solving the system obtained, we find 

,,, koLl/t , (1)  
% = O, a,,n ---- O, ICI = 1/..01 z + 1)(sin2.ko_L_dh~_~o L + e~ Lsh2nk-LS-,r, 

whe=e = Icl/ oco and consequently: 

P~ = pocoICI cos k~ (I + i~) exp (iot), 

I ( ' )] u~=--icolCl(l+in)sinl~ox(14-in) 1-V/--R exp _ ( I + i ) V  ~ -7- - ~ -  (R - -  r) exp (icot). 

To d e t e r m i n e  ~ we u s e  t h e  e n e r g y  b a l a n c e  e q u a t i o n .  We a s s u m e  t h a t  t h e  amount  o f  t i m e -  
averaged energy introduced by the piston into the tube, Wx, equals the amount of heat trans- 
ferred through the tube walls into the surrounding medium due to thermoacoustic effects We: 

W1 -j_ W2 __-7: O. (2 )  

The work of the piston is calculated by the equation 

W 1 : 2  ~[~,/~2 < Pl (X ~-z L) ll] (X =: L, /" = 0) > ,  

where < > denotes the time average. Calculating this expression, we obtain 

1 a ~z , ( 3 )  
W1 =: ~ pocoa~ [sh 211/col -~- ~1 sin 2koLl. 

The heat flow to the tube walls due to thermoacoustic effects can be calculated by the 
equation [3] 

R R 

[S e<H1T1) dr S O<rv'rl> ] < q > = - - < ~ ,  N %Po r - + dr . (4) 
Or e l  R Ox Or 

0 0 

Substituting the expressions for u~, T,, v,, we obtain after some transformations 

1 2- 
< q > = y pocolCr V '2-~  IA cos 2kox + B ch 2~lkoxl, 

where 

+ 1 + 2n : - V N - n ( 1  + V - N )  
A =  - -  1 + 2  --~, 

V ~  1 + P r  

x - -  1 + 2~ - -  2~  ~ 1 + I / N  + ~1 (I - -  l f ~ )  
B = + 1 - -  2~1 + ~l ~. 

] / - N  1 + Pr 

(5) 

The total amount converted into thermal energy is found by integrating expression (5) over 
both tube surfaces 

IV= -- 41 aRLOoc~ ICI 2 1 ~  (A sin2k0L2kOL. _;. B sh2~lk,,L~ ]" (6)  

Substituting (3) and (6) into (2), we find the following relation for determining n: 

~ ~l - -  sin 2koL, 

where ~ = /2-v/~. 

Assuming that n is a small quantity, we neglect terms of order a and higher, we use 
the relation sh2qk.i ~ 2qkoi. and choosing for air • = 1.4 and Pr = 0.72, we obtain an ex- 
pression for calculating n: 

H ( 1,47 + 2 sin 2koL 
2ko L ) (7)  k 

~1 = ]/-k--oL-{1 + sin 2k0____~L.~ ' 

k 2koL } 

where H = (I/2R)V29LTco. 
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Fig. I. Distribution of dimensionless thermal flow 
along the tube walls for frequencies below resonance 
(a) (i) koL = 2.88; 2) 2.83; 3) 2.71; 4) 2.59) and 
above resonance (b) (i) koL = 3.59; 2) 3.62; 3) 3.66; 
4) 3.74). The curves are theory, and the points -- 
the experimental data of [I]. 

Calculations show that the quantity n is indeed small (for the experimental set-up of 
[i] it is on the order of 10-2). It cannot be totally discarded,-however, since precisely 
this quantity restricts the amplitude value l~I at exact resonance: 

T C[ ::: koLl/L 
! 

-5-', 
( ~ . +  1)  - sn~koL 

Based on the results obtained, and restricting ourselves to second-order effects in de- 
scribing thermoacoustic effects, we find the distribution of thermal flow along the tube 
walls, using (i), (5), and (7) for various koL, and compare with the experimental results of 
[I]. Figure la shows the theoretical and experimental results for frequencies below reso- 
nance, and Fig. ib for frequencies above resonance, while Fig. 2 shows near-resonance results. 
As seen from these figures, the theory describes well the experimental results for koL below 
2.83 and above 3.59: the wall heating at the closed ends, the cooling at the middle, and the 
shift of the cooling band as a function of frequency. In the range between these values the 
deviation between theory and experiment is enhanced, and at the resonance frequencies the 
theory, including second-order effects, does not agree with experiment even qualitatively 
(Fig. 2). This could be expected, since as resonance is approached the oscillation amplitude 
increases quickly, and the contribution of higher-order terms becomes substantial. 

We attempt to take into account fourth-order effects, so as to describe thermoacoustlc 
effects at resonance. In [3] this problem was considered for an open tube, where, due to 
the complexity of solving systems of equations of second and fourth orders, only terms re- 
sulting from the interaction of second-order quantities were retained in the fourth-order 
energy equation. The final expression for <q> with account of fourth-order terms was obtained 
in the following form [3] forx= 1.4: 

<q> : --~ PoC~ ] c l l  o -  2 V-~v--~ { 1,47 ch 26 ,~..T.IC]z [7"07 + 0"389 ch226 + 

+ 1.366 sh~ 2~] + 2 cos 2 (kox + at) + T [0,7 sin 4 (kox + a,) - -  4,54 cos 4 (kox + a~ + 4:74~siff2 (k#- + a,) sh 26--  

- -  12.09 cos 2 (kox + at) ch 26 - -  1.4 cos 2 (kox + a~) sh 28 + 

kox(3,36sin2(kox -+- ~ ) - -  2.8 cos 2 (kox + =~)) eh 2~]} . (8) + 

In deriving the given expression, substantial simplification was achieved by introducing 
in the absorption calculation a linear x-dependence of the term i~kox with constant 18, which 
can be interpreted as a mean absorption coefficient. The same method is also used in solving 
the problem for a closed tube, and we compare the results with those obtained above for a 
complex wave number. 

Introducing the mean absorption coefficient fl leads to a simplified expression already 
in first order: 
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Fig. 2. Dimensionless thermal flow along the tube walls near 
resonance. The points are experimental results for koL = 
3.36 [i], and the dashed curve is second-order theory, not 
used in this case. 

Fig. 3. Dependence of ~koL (1)and 8 (2) on the dimensionless 
frequency koL. 

Pl ---- P0C0~ICJ cos (k0x + i13) exp (io~t), 

ul=--icolClsin(kox +i[5)[1-- 1 / $ e x p ( - - ( l  + i) / - ~ v  (R--r) ) ]exp(io~t), 

_ _  ' R (1 +i)c~ 1 + 1)--~- / - - ~  [exp (--(1 +/)l/-~-~-(R--r))-+- 
v l -  2 p o c ~  v o ~ . - -  " ' 

1 e x p ( - - ( l + i ) -  / '~Pr R 

Repeating the behavior of the solution of the problem, we find an expression for the oscilla- 
tion amplitude I~l: 

koL l / L 
[c[ ='  V~-ffoL~-r~ ~ + cos~kom sh~ 13 ' (9) 

where ~ is determined by the relation 

i R ) 2 T ~ -- Bk~ sh 213 -= ~A sin 2koL, 

and 
z4-1 • A-- 2(1--l/'-Pr) q_ l, B== 1 q- 

1 -q- Pr ]/P'r VP-r " 
For small values and in considering air B can be calculated by the equation 

[~ .... HV-k-~E (1.47+ 2 sin 2k~ " 2 k o L  (10) 

Figure 3 shows graphically the dependences of the quantities nkoL and ~ on koL, calculated 
by Eqs. (7), (I0) for the experiments of [i]. As is seen, their values at resonance coincide, 
but 8 increases more quickly with koL than ~koL. For koL = 2.9 and 3.4 the deviation in the 
nkoL and B values is less than 7%, but in this case the oscillation amplitude I~I is well de- 

!e~Ll/L 
scribed by the expression ]CI - - ,  coinciding with the equations of linear acoustics. The sin koL 
deviation in the numerical I'C'] values, calculated by Eqs. (l), (7), (9), and (i0) for the 
experiments of [i], does not exceed 2%. 

Thus, replacement of the complex wave number by the mean absorption coefficient leads to 
a change in the resonance ]~I value by a quantity whose order is less than ~. The deviation 
in the 131 values decreases with moving away from resonance. Therefore, the use of the mean 
absorption coefficient in considering thermoacoustic effects is fully justified, and, conse- 
quently, expression (8) retains its validity for a closed tube too, while in this ease ar = 
O, 8 is determined by Eq. (i0). 
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F~g. 4. Distribution of 
<q> along the tube walls for 
resonance frequencies [i) 
koL = 3.05, 2) 3.24]. The 
curves are theory with ac- 
count of fourth-order ef- 
fects, and the points are 
the experimental data of [i] 
with account of the frequency 
shift. 

Analysis of (8) shows that the main contribution of fourth-order effects to the treat- 
ment of thermal flow is provided By the second and ninth terms in the curly brackets. We re- 
call that in obtaining expression (8) we did not take into account terms which are products 
of first and third orders, even though they also contain nonvanishing, time-averaged parts. 
Consequently, generalizing the contributions of fourth-order effects By the expression I~I 4. 
(a + b cos 2 kox), the coefficients a and b need to be refined. For example, handling the ex- 
perimental data obtained in [I] gives = = --0.4,5 = --25. The expression to the tube walls 
during near-resonance oscillations (2.83 < koL < 3.59) for Pr = 0.72; ~ = 1.4 acquires then 
the form 

<q> = - f  

Bes ides ,  i t  i s  n e c e s s a r y  to  take  i n t o  accoun t  t h a t  t he rmoacous t i c  e f f e c t s  l ead  to  gas 
h e a t i n g ,  which i s  p a r t i c u l a r l y  s t rong  nea r  r e sonance  f r e q u e n c i e s .  The t empera tu re  enhance-  
ment i s  due to  the  enhanced sound v e l o c i t y ,  and, c o n s e q u e n t l y ,  the  r e s u l t i n g  f r equency  s h i f t .  
In  c o n s i d e r i n g  n e a r - r e s o n a n c e  o s c i l l a t i o n s  t h i s  f r equency  s h i f t  must Be taken i n t o  accoun t .  

F igure  4 shows the  d i s t r i b u t i o n  of  thermal  f low <q> along the  t ube  wa l l s  f o r  n e a r - r e s o -  
nance o s c i l l a t i o n s ,  c a l c u l a t e d  By Eq. (11) w i th  account  o f  the  f r equency  s h i f t ,  and the  ex -  
p e r ime n t a l  da ta  of  [1 ] .  As we see ,  good agreement  i s  ob t a ined  Between the  r e s u l t s .  

Thus, the augmemted t h e o r y ,  t ak ing  i n t o  account  f o u r t h - o r d e r  e f f e c t s ,  a l lows q u a n t i t a -  
t i v e  d e s c r i p t i o n  of  the expe r i m en t a l  f e a t u r e s  of  t he rmoacous t i c  e f f e c t s  in  the  whole r e g i o n  
of  resonance  and n e a r - r e s o n a n c e  f r e q u e n c i e s .  

NOTATION 

R, tube radius; L, tube length; e, a small parameter; U~, maximum amplitude of velocity 
fluctuations; m, frequency cycle; k, complex wave number; ko, real part of the wave number; 
~, coefficient taking into account absorption; p, pressure, u and v, axial and radial velocity 
components; t, time; x and r, axial and radial coordinates; p, density; =r and =im, constants 
determining the Boundary conditions; ICI, oscillation amplitude; Co, sound velocity in the 
unperturbed medium; Po, density of the unperturbed medium; Pr, Prandtl number; • speci- 
fic heat ratio; 9, kinematic viscosity; T, gas temperature; l, piston displacement amplitude; 
~, phase angle; W,, work of the piston; Wa, thermal loss; <q>, time-averaged thermal flux; %, 
thermal conductivity coefficient; A, B, H, a, and_b, constants; ~, width of the acoustic 
Boundary layer; B, mean absorption coefficient; <q> = <q> (~c~/R)-*, dimensionless thermal 
flux; and ~, dynamic viscosity coefficient. 
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ELECTRONIC COMPUTER STUDY OF SEPARATION FLOW FEATURES 

AROUND A VIBRATING CYLINDER 

S. M. Belotserkovskii, V. N. Kotovskii, 
M. I. Nisht, and R. M. Fedorov 

UDC 533.695.5 

The nonstationary separation flow around a circular cylinder performing harmonic 
vibrations across the stream by an incompressible viscous fluid is investigated in 
a numerical experiment. 

Three qualitatively distinct regimes of separated flow around a circular cylinder per- 
forming harmonic vibrations perpendicuarly to the free stream have been established by ex- 
perimental means [i]. Regime I is neutral, for small dimensionless vibrations frequencies 
(0~-ShI~.0.04), when their influence is not felt in the period of free vortez shedding 
from the cylinder, Regime II is transition (0.04~ShI <~-0.i), and Regime III is "capture" 
(Sh~ > 0.i) at which the frequency of free vortex shedding agrees with the frequency of cyl- 
inder vibration. 

Among the theoretical papers in this area is [2] in which results of numerical experi- 
ments to compute the nonstationary separated flow of an ideal fluid around a vibrating cyl- 
inder are presented. However, this investigation is performed under the essential assumption 
about the site of stream separation on the cylinder surface since the separation points were 
not determined by a computation of the viscous flow in the boundary layer but were given in 
conformity with the experimental data for a selected Re number. 

A method of modeling the nonstationary separation flow around bodies is proposed in [3, 
4] on the basis of the synthesis of a scheme of an ideal medium and a boundary layer. With- 
out any additional hypotheses not encompassed by these schemes, it permitted construction of 
the separation flow pattern around a fixed cylinder for both laminary and turbulent separa- 
tion [4]. 

The present paper is devoted to modeling all the above-mentioned separation flow regimes 
around a vibrating cylinder on the basis of the same theoretical scheme. In addition to a 
phenomenological confirmation of the theoretical scheme, the authors tried to use a numerical 
experiment to set up the physical features of the phenomenon. It should be emphasized that 
the approach being developed possesses great generality and can be used not only for any pro- 
files [3] but also for the study of spatial flows [5]. 

As in [3, 4], the flow as a whole around a cylinder is divided into a potential domain 
and a viscous flow domain in the boundary layer. The potential flow is computed by the 
method of discrete vortices [5]. Cumulative discrete vortices that replace the attached and 
free vortex layers are here arranged on the cylinder surface. The boundary conditions of non- 
penetration of the cylinder surface were satisfied at the control points between the vortices. 

In the presence of boundary layer separation from the cylinder surface, it is considered 
displaced completely at certain points in the potential flow domain in the form of free vor- 
tex sheets with intensity equal to the total boundary layer vorticity at its point of separa- 
tion. Moreover, it is assumed that the discrete vortices by which the free vortex sheets are 
modeled move during the first step in time after boundary layer separation, at the average 
velocity of the center of vorticity of the boundary layer located at a distance of the dis- 
placement thickness from the streamline surface. At subsequent times they move together with 
the fluid and their circulations are conserved unchanged. 
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